您所在位置:首页 > 社区 > 备考资料 > 行测 >

社区考试行测技巧:“被遗忘的角落”余数怎么玩

2021-02-23 09:45:18 来源:广东中公教育
中国剩余定理这个名字的由来,是因为这个数学思想是由中国人最早研究的,主要是用来解决一个整数除以不同整数存在余数,且余数各不相同(或部分相同)的情况,求该数的问题,比如:

那么这类问题应该如何求解,总的原则还是利用余数相同的思想来求解,即用同余特性建立的特殊模型。

1、 余同加余:即余数相同,可用除数的最小公倍数的若干倍+余数来表示这个数。

比如:A÷3…1且A÷2…1,那么A减去1之后,即是2的倍数,也是3的倍数,可以表示为A=6n+1,(n=0,1,2,3……)。其实中国剩余定理也是用的这个思想来解题。

2、 和同加和:即除数和余数之和相等,可用除数的最小公倍数的若干倍+和来表示这个数。

比如:A÷3…2且A÷4…1,将两个数的商都减小1,则余数都会变大,即余数都为5,那么就可以写成A÷3…5且A÷4…5,即A=12n+5,(n=0,1,2,3……)。

3、 差同减差:即除数减去余数的差相同,可用除数的最小公倍数的若干倍+差来表示这个数。

比如A÷3…1且A÷4…2,将两个数的商都增大1,则余数都会变小,即余数都为(-2),那么就可以写成A÷3…(-2)且A÷4…(-2),即A=12n-2,(n=0,1,2,3……)。

【例题】今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二。问物几何?

A、22 B、51 C、103 D、128

中公解析:这道题的意思是该数X÷3…2,X÷5…3且X÷7…2,通过观察可以发现,以上3个表达式中,第一个列式和第三个列式余数相同,可以利用第一个模型余同加余,即X=21n+2(n=0,1,2,3……);接下来就要考虑如何使所求数,既满足X=21n+2且X÷5…3,而这种情况既不能用和同加和,也不能用差同减差的模型,可以考虑就一个列式依次代入数值,直至满足另一个列式,这种方法就是逐步满足法:

X=21n+2,n=0时,X=2,无法满足X÷5…3;

X=21n+2,n=1时,X=23,满足X÷5…3;

所以满足最终列式的数最小值为23,X=105m+23,m=1时,X=128满足条件,选D。

数学的方法单纯靠理解是不够,还需要积累题量从而达到巩固的目的,所以各位考生想要完全掌握这种方法就需要在备考中加强练习,最终遇到相关题目才能有效解决。

叉烧包推荐你:
2021征战社途协议班
2021社区公告预约领备考资料
2021广东社区迎春锦囊

 

扫码加入QQ备考交流群:244070869

 

知考情,领资料。请加中公叉烧包老师

 注:本站稿件未经许可不得转载,转载请保留出处及源文件地址。
 

扫描左侧二维码,关注【中公广东社区工作者】,
招考咨询全get,成公上岸占先机。
回复【社区】即可领取备考资料大全~

热门推荐
【广东社区工作者】“父”星高照年中回 【广东社区工作者】7天时政打卡领图书 【广东社区工作者】2020社区提前学新课 【广东社区工作者】全年提前学优惠3000
公告预约
省份 *
姓名 *
电话 *
QQ
微信
备考平台
考前热搜

中公简介 | 中公荣誉 | 社会责任 | 媒体聚焦 | 联系我们 | 版权声明 | 支付方式 | 友情链接 | 网站导航 | 加入我们
Copyright©1999- 北京中公教育科技有限公司 .All Rights Reserved
全国统一报名专线:400-6300-999 网校报名:400-900-8885 图书订购:400-6509-705
京ICP备10218183号-83 京ICP证161188号 京公网安备 11010802029763号 出版物经营许可证新出发京批字第直130052号